
Matrix Properties & 
Algebra Through

THE EXPANDED 
NOTATIONAL 

SYSTEM 



The Expanded Notational System — Matrix Properties & Algebra

Matrix Properties & Algebra Through

The Expanded Notational System

mathvault.ca

In this paper, we introduce the Expanded Notational System for matrices and its

components, and illustrate its theoretical and algebraic advantages over the standard

notational system — where expressions are often written solely in terms of matrix

entries or the matrices themselves .
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$ 1 Preliminaries

In this section, we introduce the various components of the Expanded Notational

System, along with some exploration around the concept of matrix equivalence.
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	 1.1 The Expanded Notational System

As expected, we begin with the standard definition of a matrix:

à Definition 1.1 (Matrix)

In linear algebra, we define a matrix A as a two-dimensional array of numbers

of the form:







A11 · · · A1n
...

...

Am1 · · · Amn







with Aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) being its individual entries.

Since A has m rows and n columns, it falls into the category of a m× n matrix.

In addition:

• If m = 1, then we say that A is a n-entry row matrix.

• If n = 1, then we say that A is a m-entry column matrix.

In some occasions, instead of specifying all the entries of a matrix, we might be more

interested in specifying only the rows or the columns of the matrix. In that case, the

following definition can be helpful:

à Definition 1.2 (Row/Column Representation of a Matrix)

Given m n-entry row matrices R1, . . . , Rm with Ri =
(

Ri1 · · · Rin

)

for each

i ∈ {1, . . . ,m}, we define the following expression







R1
...

Rm







to be the m × n matrix containing the corresponding entries of the said row

matrices. That is:






R1
...

Rm







df
=







R11 · · · R1n
...

. . .
...

Rm1 · · · Rmn







Similarly, given n m-entry column matrices C1, . . . , Cn with Cj =







C1j
...

Cmj






for
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all j ∈ {1, . . . , n}, we define the expression
[

C1 · · · Cn

]

as the m× n matrix

containing the corresponding entries of the said column matrices. That is:

[

C1 · · · Cn

] df
=







C11 · · · C1n
...

. . .
...

Cm1 · · · Cmn







Here, notice that parentheses are used to specify a matrix by its entries, and brackets

are used to specify a matrix by its rows or columns. Also note that this definition is

unambiguous in the sense that:

• A vertical representation always corresponds to a row representation of a

matrix.

• A horizontal representation always corresponds to a column representation of

a matrix.

With these handy notations, we can now proceed to introduce a notation to “capture"

the rows of a matrix:

à Definition 1.3 (Matrix Row)

Given a m× n matrix A, we define Ai� — colloquially the ith row of A — as

the n-entry row matrix whose entries are precisely those found in A’s ith row.

That is:

Ai�
df
=

(

Ai1 · · · Ain

)

(where i ∈ {1, . . . ,m})

Note that this notation also allows us to rewrite A as its row representation as

follows:






A1�
...

Am�







As expected, a similar notation can also be applied to capture the columns of a matrix:

à Definition 1.4 (Matrix Column)

Given a m× n matrix A, we define A�j — colloquially the jth column of A —

as the m-entry column matrix whose entries are precisely those found under
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A’s j th column. That is:

A�j
df
=







A1j
...

Amj






(where j ∈ {1, . . . , n})

Note that this notation also allows us to rewrite A as its column representation

as follows:
[

A�1 · · · A�n

]

With these notations set, we now have the ability to not only construct a matrix from

a series of row matrices or column matrices, but deconstruct a matrix into its rows

and columns as well.

As a final reminder, note that given a matrix A:

• Aij is always a number for admissible i and j.

• Ai� is always a row matrix for admissible i.

• A�j is always a column matrix for admissible j.

• [Ai�] =
(

Ai1 · · · Ain

)

= Ai� for admissible i.

• [A�j] = A�j for admissible j.

And with that, we have completed our introduction of the Expanded Notational

System, where:

• Matrices can be represented in both 1D (row/column representation) and 2D

(standard array representation).

• In addition to matrices and matrix entries, matrix rows and matrix columns can

be referred to by their symbolic counterparts as well.

� Remark: Why such notations?

While these notations might look a bit cumbersome at first, it generalizes very

well when it comes to higher-dimensional matrices. In addition, it helps us

refine the algebra on not just the matrix rows and matrix columns, but on the

row/column representations of matrices as well.

	 1.2 Matrix Equivalence

The following definition lays out what it means for two matrices to be equal:
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à Definition 1.5 Matrix Equivalence

Given a m× n matrix A and a m′ × n′ matrix B, we say that A = B if and only

if the following two conditions jointly hold:

1. m = m′ and n = n′.

2. Aij = Bij for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

Naturally, one can verify matrix equivalence by equating solely the rows or the

columns of the matrices as well. The following chain of equivalences is a testament

to this fact:

Ï Proposition 1.1 (Matrix Equivalence — Three Symbolic Approaches)

Given two m× n matrices A and B, the following three claims are equivalent:

(i) A = B

(ii) Ai� = Bi� for all i ∈ {1, . . . ,m}.

(iii) A�j = B�j for all j ∈ {1, . . . , n}.

Proof

(i) =⇒ (ii)

Since A = B, Aij = Bij for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. This means

that for all i ∈ {1, . . . ,m}:

Ai� =
(

Ai1 · · · Ain

)

=
(

Bi1 · · · Bin

)

= Bi�

(ii) =⇒ (i)

Since (ii) holds, given any i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m} we must have

that:

Ai� = Bi� ⇐⇒
(

Ai1 · · · Ain

)

=
(

Bi1 · · · Bin

)

=⇒

Aij = Bij

The proofs for (i) =⇒ (iii) and (iii) =⇒ (i) can be carried out in a similar

manner, yielding the chain of equivalences as desired.
�

The following proposition — which allows us to perform algebra on row/column
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representations of matrices — represents a slightly different rendition of the just-

established Proposition 1.1:

Ï Proposition 1.2 (Matrix Equivalence — Visual Approaches)

Given m n-entry row matrices R1, . . . , Rm and another set of m n-entry row

matrices R′
1, . . . , R

′
m, we have that:







R1
...

Rm






=







R′
1

...

R′
m






⇐⇒ Ri = R′

i for all i ∈ {1, . . . ,m}

Similarly, given n m-entry column matrices C1, . . . , Cn and another set of n

m-entry column matrices C ′
1, . . . , C

′
n, we also have that:

[

C1 · · · Cn

]

=
[

C ′
1 · · · C ′

n

]

⇐⇒ Cj = C ′
j for all j ∈ {1, . . . , n}

Proof Immediate from Proposition 1.1.
�

In practice, the symbolic approaches for establishing matrix equivalence tend to be

more concise, while the visual approaches more intuitive, and while both approaches

provide two additional techniques for proving matrix equivalence, it remains that the

standard technique can still be very helpful when applied at the right place.

$ 2 Operations

In what follows, we’ll look at some of the most common matrix operations and how

they are handled under the Expanded Notational System. These operations include

scalar multiplication, addition, multiplication and transposition.

	 2.1 Scalar Multiplication

As usual, we begin with the standard definition of scalar multiplication:

à Definition 2.1 (Scalar Multiplication)

Given a m × n matrix and a number k, we define kA as the m × n matrix

resulted from multiplying each entry of A by k. That is:
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(kA)ij
df
= kAij (for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n})

Algebraically, this means that when it comes to scalar products, we can elect to push

the matrix indices in or out. In fact, the following proposition shows that more is

true:

Ï Proposition 2.1 (Scalar Multiplication on Row/Column Representations)

Given m n-entry row matrices R1, . . . , Rm and a number k, we have that:

k







R1
...

Rm






=







kR1
...

kRm







Similarly, given n m-entry column matrices C1, . . . , Cn and a number k, we

also have that:

k
[

C1 · · · Cn

]

=
[

kC1 · · · kCn

]

Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both m× n matrices, For the first claim, we can proceed by

equating the corresponding rows of the two matrices.

More specifically, given an i ∈ {1, . . . ,m} with Ri =
(

Ri1 . . . Rin

)

, we can

see that:






k







R1
...

Rm













i�

=
(

kRi1 . . . kRin

)

= k
(

Ri1 · · · Rin

)

= kRi

=







kR1
...

kRm







i�

And since i is arbitrary, the proof of the first claim is complete. Note that the

second claim can be proved similarly by equating the corresponding columns

of the matrices.
�
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In particular, we have that:

Ï Proposition 2.2 (Scalar Multiplication on Matrix Rows and Matrix

Columns)

Given a m× n matrix A, the following two claims hold:

(i) (kA)i� = kAi� for all i ∈ {1, . . . ,m}.

(ii) (kA)�j = kA�j for all j ∈ {1, . . . , n}.

Proof For (i), notice that given any i ∈ {1, . . . ,m}, we have that:

(kA)i� =






k







A1�
...

Am�













i�

=







kA1�
...

kAm�







i�

= kAi�

By breaking A down into its column representation, we can also prove (ii) in

a very similar manner.
�

In other words, not only can we push the indices in and out when it comes to matrix

entries, but we can also do so with any matrix column or matrix row as well.

Exercise Given a m× n matrix A and two numbers k1 and k2, prove that

k1(k2A) = (k1k2)A (also known as scalar associativity) using the following

techniques:

(i) By equating the corresponding matrix entries (symbolic approach).

(ii) By equating the corresponding matrix rows (both symbolic and visual

approaches).

(iii) By equating the corresponding matrix columns (both symbolic and

visual approaches).

Among the five techniques, which one did you find to be the most elegant in

this case? And why?
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	 2.2 Addition

As usual, we begin with the standard definition of matrix addition:

à Definition 2.2 (Addition)

Given two m× n matrices, we define A+B as the m× n matrix resulted from

adding the corresponding entries of A and B. That is:

(A+B)ij
df
= Aij +Bij (for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n})

Algebraically, this means that when it comes to the sum of matrices, the matrix

indices can be distribute over or factor out of the two matrices. In fact, the following

proposition shows that more is true:

Ï Proposition 2.3 (Addition on Row/Column Representations)

Given m n-entry row matrices R1, . . . , Rm and another set of m n-entry row

matrices R′
1, . . . , R

′
m, we have that:







R1
...

Rm






+







R′
1

...

R′
m






=







R1 +R′
1

...

Rm +R′
m







Similarly, given n m-entry column matrices C1, . . . , Cn and another set of n

m-entry column matrices C ′
1, . . . , C

′
n, we also have that:

[

C1 · · · Cn

]

+
[

C ′
1 · · · C ′

n

]

=
[

C1 + C ′
1 · · · Cn + C ′

n

]

Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both m× n matrices. For the first claim, we can proceed by

equating the corresponding rows of the two matrices.

More specifically, given an i ∈ {1, . . . ,m} with Ri =
(

Ri1 · · · Rin

)

and

R′
i =

(

R′
i1 · · · R′

in

)

, we can see that:

2 OPERATIONS 10



The Expanded Notational System — Matrix Properties & Algebra













R1
...

Rm






+







R′
1

...

R′
m













i�

=
(

Ri1 +R′
i1 · · · Rin +R′

in

)

= Ri +R′
i

=







R1 +R′
1

...

Rm +R′
m







i�

And since i is arbitrary, the proof of the first claim is complete. Note that the

second claim can be proved similarly by equating the corresponding columns

of the matrices.
�

In particular, we also have that:

Ï Proposition 2.4 (Addition on Matrix Rows and Matrix Columns)

Given two m× n matrices A and B, the following two claims hold:

(i) (A+B)i� = Ai� +Bi� for all i ∈ {1, . . . ,m}.

(ii) (A+B)�j = A�j +B�j for all j ∈ {1, . . . , n}.

Proof For (i), notice that given any i ∈ {1, . . . ,m}, we have that:

(A+B)i� =













A1�
...

Am�






+







B1�
...

Bm�













i�

=







A1� +B1�
...

Am� +Bm�







i�

= Ai� +Bi�

By breaking A and B down into their column representations, we can also

prove (ii) in a very similar manner.
�

In other words, not only can we distribute and factor out the indices associated with

matrix entries, but we can also do so with the indices associated with matrix columns

and matrix rows as well.
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Exercise Using the three symbolic and the two visual techniques for estab-

lishing matrix equivalence, prove that given three m× n matrices A, B and C

and three numbers k, k1 and k2, the following properties on matrices hold:

(i) A+B = B + A (Commutativity on +)

(ii) (A+B) + C = A+ (B + C) (Associativity on +)

(iii) k(A+B) = kA+ kB (Scalar Distributivity — Two Matrices)

(iv) (k1 + k2)A = k1A+ k2A (Scalar Distributivity — Two Constants)

Among the five techniques, which would you consider to be the most elegant?

Why?

	 2.3 Transposition

At this point, the matrix operations covered thus far are all binary in nature, in that

they require two inputs in order to produce the intended output. In what follows,

we’ll introduce our very first unary matrix operation — an operation whose output

only requires one input:

à Definition 2.3 (Transposition)

Given a m× n matrix A, we define AT — the transpose of A — as the n×m

matrix resulted from interchanging the row and column numbers of A’s entries.

That is:

(AT )ij = Aji (for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m})

While transposition might seem a bit counter-intuitive at first, the following proposition

shows that it is in actuality grounded in some simple geometric intuition one can

readily make use of:

Ï Proposition 2.5 (Transposition on Row/Column Representations)

Given m n-entry row matrices R1, . . . , Rm, we have that:







R1
...

Rm







T

=
[

R1
T · · · Rm

T
]

Similarly, given n m-entry column matrices C1, . . . , Cn, we also have that:
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[

C1 · · · Cn

]T
=







C1
T

...

Cn
T







Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both n×m matrices. For the first claim, we can proceed by

equating the corresponding entries of the two matrices.

More specifically, given an i ∈ {1, . . . , n} and a j ∈ {1, . . . ,m} with Rj =
(

Rj1 · · · Rjn

)

, exploring the left side of the equation yields that:













R1
...

Rm







T





ij

=







R1
...

Rm







ji

= Rji

On the other hand, since Rj
T =







Rj1
...

Rjn






, exploring the right side of the equation

also yields that:

[

R1
T · · · Rm

T
]

ij
= Rji

And since i and j are arbitrary, the proof of the first claim is complete. Note

that the second claim can be proved similarly by equating the corresponding

entries of the two matrices as well.
�

In other words, transposition turns the rows of a matrix into its columns, and the

columns of a matrix into its rows. Here is a proposition that articulates the same idea

— albeit from a slightly different perspective:

Ï Proposition 2.6 (Transposition on Matrix Rows and Matrix Columns)

Given a m× n matrix A, the following two claims hold:

(i) (AT )i� = (A�i)
T for all i ∈ {1, . . . , n}.

(ii) (AT )�j = (Aj�)
T for all j ∈ {1, . . . ,m}.
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Proof For (i), notice that given any i ∈ {1, . . . , n}, we have that:

(AT )i� =
(

[

A�1 · · · A�n

]T
)

i�

=







(A�1)
T

...

(A�n)
T







i�

= (A�i)
T

By breaking A down into its row representation, we can also prove (ii) in a

very similar manner.
�

As we have seen, the algebra on transposition is a bit more subtle, and involves both

swapping and distributing/factoring. On the top of that, the transposition operator

can be also combined with other previously-mentioned operators — yielding a new

series of interesting matrix properties (see the exercise below).

Exercise Prove — using an appropriate technique in each case — that given

two m × n matrices A and B and a number k, the following properties on

matrices hold:

(i) (A+B)T = AT +BT

(ii) (kA)T = k(AT )
(iii) (AT )T = A

	 2.4 Multiplication

Unlike other operations, matrix multiplication is intricately defined and plays a foun-

dational role in many subtopics of linear algebra. As such, we’ll begin its treatment

by first introducing the basic definitions and properties — before embarking on other

key properties where multiple operators are involved.

Ï 2.4.1 Basic Definitions and Properties

Unlike scalar multiplication, the (full) multiplication involves an intricate interaction

between matrix rows and matrix columns. In light of this, it makes sense to first begin

by defining what it means to multiply a row with a (compatible) column:

2 OPERATIONS 14



The Expanded Notational System — Matrix Properties & Algebra

à Definition 2.4 (Dot Multiplication)

Given an n-entry row matrix A =
(

A1 · · · An

)

and an n-entry column matrix

B =







B1
...

Bn






, we define A •B as the sum obtained by adding up the products

resulted from multiplying the corresponding entries of A and B. That is:

A •B
df
= A1B1 + · · ·+ AnBn

=
n

∑

i=1

AiBi

� Remark: Dot Multiplication vs. Dot Product

Here, notice that while the definition of dot multiplication resembles that of

dot product for vectors, these two operations actually represent slightly distinct

concepts. For example:

• Dot multiplication operates solely on matrices, while dot product operates

solely on vectors.

• Dot multiplication is not commutative (i.e., A • B 6= B • A), while dot

product is.

And with that settled, the full definition of matrix multiplication is now in order:

à Definition 2.5 (Multiplication)

Given a m × p matrix A and a p × n matrix B (i.e., a row of A has the same

number of entries as a column of B), we define AB as the m×n matrix resulted

by dot-multiplying the rows of A with the columns of B. That is:

(AB)ij
df
= Ai� •B�j (for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n})

o Caution: Matrix Multiplication is not Dot Multiplication

Matrix multiplication, which produces a matrix, should not be mistaken with

dot multiplication, which produces a scalar quantity. In particular, even in the

presence of an n-entry row matrix R and an n-entry column matrix C, we still

have that:

RC =

(

R • C

)

6= R • C

2 OPERATIONS 15



The Expanded Notational System — Matrix Properties & Algebra

The following proposition expands upon the definition above — further demonstrating

how a matrix product can be visualized under the Expanded Notational System:

Ï Proposition 2.7 (Multiplication — Visual Representation)

Given m p-entry row matrices R1, . . . , Rm and n p-entry column matrices

C1, . . . , Cn, we have that:







R1
...

Rm







[

C1 · · · Cn

]

=







R1 • C1 · · · R1 • Cn

...
...

Rm • C1 · · · Rm • Cn







In particular, we have that:

R1

[

C1 · · · Cn

]

=
(

R1 • C1 · · · R1 • Cn

)

And that:






R1
...

Rm






C1 =







R1 • C1
...

Rm • C1







Proof Immediate from the definition of matrix multiplication.
�

In fact, one can even carry out multiplications on row/column representations of

matrices — as the proposition suggests:

Ï Proposition 2.8 (Multiplication on Row/Column Representations)

Given a m× p matrix A and n p-entry column C1, . . . , Cn, we have that:

A
[

C1 · · · Cn

]

=
[

AC1 · · · ACn

]

Similarly, given m p-entry row matrices R1, . . . , Rm and a p× n matrix B, we

also have that:






R1
...

Rm






B =







R1B
...

RmB







Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both m× n matrices. For the first claim, we can proceed by
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equating the corresponding columns of the two matrices.

More specifically, given a j ∈ {1, . . . , n}, we have that:

(

A
[

C1 · · · Cn

]

)

�j

=













A1�
...

Am�







[

C1 · · · Cn

]







�j

=







A1� • C1 · · · A1� • Cn

...
...

Am� • C1 · · · Am� • Cn







�j

=







A1� • Cj

...

Am� • Cj







=







A1�
...

Am�






Cj

= ACj

=
[

AC1 · · · ACn

]

�j

And since j is arbitrary, the proof of the first claim is complete. Note that the

second claim can be proved similarly by equating the corresponding row of

the two matrices as well.

�

In particular, we have that:

Ï Proposition 2.9 (Multiplication on Matrix Rows and Matrix Columns)

Given a m× p matrix A and a p× n matrix B, the following two claims hold:

(i) (AB)i� = Ai�B for all i ∈ {1, . . . ,m}.

(ii) (AB)�j = AB�j for all j ∈ {1, . . . , n}.
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Proof For (i), notice that given any i ∈ {1, . . . ,m}, we have that:

(AB)i� =













A1�
...

Am�






B







i�

=







A1�B
...

Am�B







i�

= Ai�B

By breaking B down into its column representation, we can also prove (ii) in

a very similar manner.
�

Algebraically, this means that when it comes to matrix products, a row index can

be pushed in to the left matrix, while a column index can be pushed in to the right

matrix.

Ï 2.4.2 Other Key Properties

In this section, we look at other key matrix properties involving the multiplication op-

erator — through the lens of Expanded Notational System and other results established

in the previous sections.

à Definition 2.6 (Identity Matrix)

Given a natural number n, we define the identity matrix In (or simply I when

the context is clear) as the n× n matrix such that for all i, j ∈ {1, . . . , n}:

Iij =

{

1 if i = j

0 if i 6= j

As expected, the identity matrix possesses the so-called identity property, which

states that:

Ï Proposition 2.10 (Identity Property)

Given a n × n matrix A and the n × n identity matrix I, the following two

claims hold:
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(i) AI = A

(ii) IA = A

Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both n× n matrices. For the first claim, we can proceed by

equating the corresponding entries of the two matrices.

More specifically, given i, j ∈ {1, . . . , n}, we have that:

(AI)ij = Ai� • I�j

=
(

Ai1 · · · Ain

)

•







I1j
...

Inj







= Aij (why?)

And since i and j are arbitrary, the proof of the first claim is complete. Note

that the second claim can be proved similarly by equating the corresponding

entries of the two matrices as well.
�

So In is to the set of n × n matrices the same way 1 is to the set of real numbers.

On a similar note, here’s another property involving both multiplication and scalar

multiplication:

Ï Proposition 2.11 (Scalar Attachability/Detachability)

Given a m× p matrix A, a p× n matrix B and a number k, the following two

claims hold:

(i) (kA)B = k(AB)
(ii) A(kB) = k(AB)

Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both m× n matrices. For the first claim, we can proceed by

equating the corresponding entries of the two matrices.
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More specifically, given an i ∈ {1, . . . ,m} and a j ∈ {1, . . . , n}, we have that:

(

(kA)B
)

ij
= (kA)i� •B�j

= (kAi�) •B�j

=
(

kAi1 · · · kAip

)

•







B1j
...

Bpj







= k







(

Ai1 · · · Aip

)

•







B1j
...

Bpj












(why?)

= k(Ai� •B�j)

= k(AB)ij

=
(

k(AB)
)

ij

And since i and j are arbitrary, the proof of the first claim is complete. Note

that the second claim can be proved similarly by equating the corresponding

entries of the two matrices as well.
�

In other words, when a scalar constant occurs in the context of a matrix product, it

can either be pushed towards A or B — or be pulled away from them as one wishes.

Scalar multiplication aside, the multiplication operator can also interact with the

addition operator, thereby producing the so-called distributive properties:

Ï Proposition 2.12 (Left/Right Distributivity)

Given a m× p matrix A and two p× n matrices B and C, we have that:

A(B + C) = AB + AC (Left Distributivity)

Similarly, given two m× p matrices A and B along with a p× n matrix C, we

also have that:

(A+B)C = AC +BC (Right Distributivity)

Proof To begin, notice that for both claims, the expressions on either sides of

the equation are both m× n matrices. For the first claim, we can proceed by

equating the corresponding entries of the two matrices.
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More specifically, given an i ∈ {1, . . . ,m} and a j ∈ {1, . . . , n}, we have that:

(

A(B + C)

)

ij

= Ai� • (B + C)�j

= Ai� • (B�j + C�j)

=
(

Ai1 · · · Aip

)

•







B1j + C1j
...

Bpj + Cpj







=
(

Ai1 · · · Aip

)

•







B1j
...

Bpj






+
(

Ai1 · · · Aip

)

•







C1j
...

Cpj







= Ai� •B�j + Ai� • C�j

= (AB)ij + (AC)ij

= (AB + AC)ij

And since i and j are arbitrary, the proof of the first claim is complete. Note

that the second claim can be proved similarly by equating the corresponding

entries of the two matrices as well.
�

In addition to scalar multiplication and addition, the multiplication operator can also

interact with the transposition operator, leading to yet another interesting matrix

property:

Ï Proposition 2.13 (Transposition of Matrix Product)

Given a m× p matrix A and a p× n matrix B, we have that:

(AB)T = BTAT

Proof To begin, notice that the expressions on either sides of the equation

are both n×m matrices. With that in mind, we can proceed with the proof by

equating the corresponding entries of the two matrices.
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More specifically, given an i ∈ {1, . . . , n} and a j ∈ {1, . . . ,m}, we have that:

(

(AB)T
)

ij
= (AB)ji

= Aj� •B�i

=
(

Aj1 · · · Ajp

)

•







B1i
...

Bpi







=
(

B1i · · · Bpi

)

•







Aj1
...

Ajp







= (B�i)
T • (Aj�)

T

= (BT )i� • (AT )�j

= (BTAT )ij

And since i and j are arbitrary, the proof is now complete.
�

We now conclude the section with a fundamental property on multiplication which

— as easy as it is to state — is rarely proved in introductory texts:

Ï Proposition 2.14 (Multiplicative Associativity)

Given a m× p matrix A, a p× q matrix B and a q × n matrix C, we have that:

(AB)C = A(BC)

Proof To begin, notice that the expressions on either sides of the equation

are both m× n matrices. With that in mind, we can proceed with the proof by

equating the corresponding entries of the two matrices.

More specifically, given an i ∈ {1, . . . ,m} and a j ∈ {1, . . . , n}, exploring the
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left side of the equation yields that:

(

(AB)C

)

ij

= (AB)i� • C�j

=
(

(AB)i1 · · · (AB)iq
)

•







C1j
...

Cqj







=
(

Ai� •B�1 · · · Ai� •B�q

)

•







C1j
...

Cqj







= (Ai� •B�1)C1j + · · ·+ (Ai� •B�q)Cqj

=

(p,q)
∑

(©,©)=(1,1)

Ai©B©©C©j (why?)

On the other hand, exploring the right side of the equation also yields that:

(

A(BC)

)

ij

= Ai� • (BC)�j

=
(

Ai1 · · · Aip

)

•







(BC)1j
...

(BC)pj







=
(

Ai1 · · · Aip

)

•







B1� • C�j

...

Bp� • C�j







= Ai1(B1� • C�j) + · · ·+ Aip(Bp� • C�j)

=

(p,q)
∑

(©,©)=(1,1)

Ai©B©©C©j (why?)

And since i and j are arbitrary, the proof is now complete.
�

Incidentally, this is also one of the proofs which illustrates how the Expanded Nota-

tional System — while tedious to define and develop at first — can make a derivation

much simpler and shorter in the long run.
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$ 3 Final Words and Further Exploration

As we have seen in the previous sections, the Expanded Notational System — along

with the properties established upon it thus far — allows us articulate matrix-related

ideas with clarity and perform algebra on row/column representations and matrix

indices.

As a result, instead of resorting to verbose mathematical expressions or ambiguous

English paragraphs, we can now prove a wide range of matrix-related propositions

with great concision — without sacrificing intuition or rigor.

While not readily apparent, the Expanded Notational System is set up in part to

discourages 2D representations of matrices (along with the verbosity commonly

associated with them). In doing so, it often frees up a great deal of irrelevant details

— thereby allowing us to better focus on what matters the most.

Granted, while some of the fundamental operational properties might have appeared

trivial, in the grand scheme of things, each of these properties aids in further refining

the algebraic and inferential strength of the system upon which we operate.

In fact, we have also seen that once the fundamental operational properties established,

almost all future propositions can be proved succinctly through repeated applications

of those properties. As the old adage says, "what started hard becomes exponentially

easier", and that seems to be the case with the Expanded Notational System.

For your curiosity, here are some of the other important matrix properties the Expanded

Notational System works particularly well with:

Other Important Matrix Properties

• Given two n × n matrices A and B, Tr(A + B) = Tr(A) + Tr(B) and

Tr(AB) = Tr(BA).

• Given two n×n diagonal matrices A and B, AB is precisely the diagonal

matrix such that (AB)ii = AiiBii for all i ∈ {1, . . . , n}.

• Given a n× n matrix A, if E and A′ are the n× n matrices resulted from

applying an elementary row operation on In and A, respectively, then

EA = A′.

• Given a n× n matrix A, Adj(A)A = AAdj(A) = Det(A)In.

• (Cramer’s Rule) Given an invertible n × n matrix A and two n-entry
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column matrices X =







x1
...

xn






and B, then AX = B if and only if xi =

Det(Ai)

Det(A)
for all i ∈ {1, . . . , n} (where Ai is the n× n matrix obtained by

replacing the ith column of A by B).

• (Diagonalizability) Given a n × n matrix A, if A has n eigenvectors

(written as column matrices V1, . . .Vn with λ1, . . . , λn being their as-

sociated eigenvalues) such that P
df
=

[

V1 · · · Vn

]

is invertible, then

P−1AP = Diag(λ1, . . . , λn).

As you can probably see by now, becoming acquainted with the Expanded Notational

System — along with the properties introduced thus far — can provide you with

a robust theoretical foundation on matrices. Not only will you internalize a new

set of algebraic rules, but you will also develop a strong intuition on why matrix

components behave and interact with each other the way they are.

¤ Key Ideas

Expanded Notational System

Standard Array Representation

Row Representation

Column Representation

Matrix Row (Notation)

Matrix Column (Notation)

Matrix Equivalence

Symbolic Approaches

Visual Approaches
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¤ Key Properties

Properties on Row/Column Represen-

tations

k







R1
...

Rm






=







kR1
...

kRm







k
[

C1 · · · Cn

]

=
[

kC1 · · · kCn

]







R1
...

Rm






+







R′
1

...

R′
m






=







R1 +R′
1

...

Rm +R′
m







[

C1 · · · Cn

]

+
[

C ′
1 · · · C ′

n

]

=
[

C1 + C ′
1 · · · Cn + C ′

n

]







R1
...

Rm







T

=
[

R1
T · · · Rm

T
]

[

C1 · · · Cn

]T
=







C1
T

...

Cn
T







A
[

C1 · · · Cn

]

=
[

AC1 · · · ACn

]







R1
...

Rm






B =







R1B
...

RmB







Properties on Matrix Rows and Ma-

trix Columns

• (kA)i� = kAi�

• (kA)�j = kA�j

• (A+B)i� = Ai� +Bi�

• (A+B)�j = A�j +B�j

• (AT )i� = (A�i)
T

• (AT )�j = (Aj�)
T

• (AB)i� = Ai�B

• (AB)�j = AB�j
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