Comprehensive List of Mathematical Symbols
Comprehensive List of Mathematical Symbols

For the corresponding web guides, see Mathematical Symbols.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsections</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Constant</td>
<td>1.1 Key Mathematical Numbers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.2 Key Mathematical Sets</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Key Mathematical Infinities</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.4 Other Key Mathematical Objects</td>
<td>6</td>
</tr>
<tr>
<td>2 Variables</td>
<td>2.1 Variables for Numbers</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Variables in Geometry</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.3 Variables in Calculus</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.4 Variables in Linear Algebra</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.5 Variables in Set Theory and Logic</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.6 Variables in Probability and Statistics</td>
<td>9</td>
</tr>
<tr>
<td>3 Delimiters</td>
<td>3.1 Common Delimiters</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.2 Other Delimiters</td>
<td>10</td>
</tr>
<tr>
<td>4 Operators</td>
<td>4.1 Constants</td>
<td>11</td>
</tr>
</tbody>
</table>
1 Constant

1.1 Key Mathematical Numbers
Comprehensive List of Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Zero, additive identity)</td>
<td>0</td>
<td>$3 + 0 = 3$</td>
</tr>
<tr>
<td>1 (One, multiplicative identity)</td>
<td>1</td>
<td>$5 \times 1 = 5$</td>
</tr>
<tr>
<td>$\sqrt{2}$ (Square root of 2)</td>
<td>$\sqrt{2}$</td>
<td>$(\sqrt{2} + 1)^2 = 3 + 2\sqrt{2}$</td>
</tr>
<tr>
<td>e (Euler’s constant)</td>
<td>e</td>
<td>$\ln(e^2) = 2$</td>
</tr>
<tr>
<td>π (Pi, Archimedes’ constant)</td>
<td>π</td>
<td>$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \cdots$</td>
</tr>
<tr>
<td>φ (Phi, golden ratio)</td>
<td>φ</td>
<td>$\varphi = \frac{1 + \sqrt{5}}{2}$</td>
</tr>
<tr>
<td>i (Imaginary unit)</td>
<td>i</td>
<td>$(1 + i)^2 = 2i$</td>
</tr>
</tbody>
</table>

1.2 Key Mathematical Sets

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset (Empty set)</td>
<td>\varnothing</td>
<td>$</td>
</tr>
<tr>
<td>\mathbb{N} (Set of natural numbers)</td>
<td>\mathbb{N}</td>
<td>$\forall x, y \in \mathbb{N}, x + y \in \mathbb{N}$</td>
</tr>
<tr>
<td>\mathbb{Z} (Set of integers)</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{N} \subseteq \mathbb{Z}$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
</table>
| \(\mathbb{Z}_+ \)
(Set of positive integers) | \mathbb{Z}_+ | $3 \in \mathbb{Z}_+$ |
| \(\mathbb{Q} \)
(Set of rational numbers) | \mathbb{Q} | $\sqrt{2} \notin \mathbb{Q}$ |
| \(\mathbb{R} \)
(Set of real numbers) | \mathbb{R} | $\forall x \in \mathbb{R} \ (x^2 \geq 0)$ |
| \(\mathbb{R}_+ \)
(Set of positive real numbers) | \mathbb{R}_+ | $\forall x, y \in \mathbb{R}_+ \ (xy \in \mathbb{R}_+)$ |
| \(\mathbb{C} \)
(Set of complex numbers) | \mathbb{C} | $\exists z \in \mathbb{C} \ (z^2 + 1 = 0)$ |
| \(\mathbb{Z}_n \)
(Set of integer modulo \(n \)) | \mathbb{Z}_n | In the world of \(\mathbb{Z}_2 \), \(1 + 1 = 0 \). |
| \(\mathbb{R}^3 \)
(Three-dimensional Euclidean space) | \mathbb{R}^3 | \((5, 1, 2) \in \mathbb{R}^3 \) |

1.3 Key Mathematical Infinities

| Symbols
(Explanation)	LaTeX Code	Example
\(\aleph_0 \)		
(Cardinality of natural numbers)	\aleph_0	\(\aleph_0 + 5 = \aleph_0 \)
\(\mathfrak{c} \)		
(Cardinality of real numbers)	\mathfrak{c}	\(\mathfrak{c} = 2^{\aleph_0} \)
\(\omega \)		
(Smallest infinite ordinal number) | ω | $\forall n \in \mathbb{N} \ (n < \omega)$ |
1.4 Other Key Mathematical Objects

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Zero vector)</td>
<td>$\mathbf{0}$</td>
<td>$\forall v \in V, v + 0 = v$</td>
</tr>
<tr>
<td>e (Identity element of a group)</td>
<td>e</td>
<td>$e \circ e = e$</td>
</tr>
<tr>
<td>I (Identity matrix)</td>
<td>I</td>
<td>$AI = IA = A$</td>
</tr>
<tr>
<td>C (Constant of integration)</td>
<td>C</td>
<td>$\int 1 , dx = x + C$</td>
</tr>
<tr>
<td>\top (Tautology)</td>
<td>\top</td>
<td>For each proposition P, $P \land \top \equiv P$.</td>
</tr>
<tr>
<td>\bot (Contradiction)</td>
<td>\bot</td>
<td>For each proposition P, $P \land \neg P \equiv \bot$.</td>
</tr>
<tr>
<td>Z (Standard normal distribution)</td>
<td>Z</td>
<td>$Z \sim N(0, 1)$</td>
</tr>
</tbody>
</table>

2 Variables

2.1 Variables for Numbers

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>m, n, p, q (Integers and natural numbers)</td>
<td>m, n, p, q</td>
<td>$m + n - q = 1$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

\(a, b, c\)
(Coefficients for functions and equations)

\(ax + by = 0\)

\(x, y, z\)
(UnKnowns in functions and equations)

If \(2x + 5 = 3\), then \(x = -1\).

\(\Delta\)
(Discriminant)

\(\Delta = b^2 - 4ac\) for quadratic polynomials

\(i, j, k\)
(Index variables)

\(\sum_{i=1}^{10} i = 55\)

\(t\)
(Time variable)

At \(t = 5\), the velocity is \(v(5) = 32\).

\(z\)
(Complex numbers)

\(z\bar{z} = |z|^2\)

2.2 Variables in Geometry

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P, Q, R, S) (Vertices)</td>
<td>(P$, Q, R, S</td>
<td>(PQ \perp QR)</td>
</tr>
<tr>
<td>(\ell) (Lines)</td>
<td>(\ell$</td>
<td>(\ell_1 \parallel \ell_2)</td>
</tr>
<tr>
<td>(\alpha, \beta, \gamma, \theta) (Angles)</td>
<td>(\alpha$, β, γ, θ</td>
<td>(\alpha + \beta + \theta = 180^\circ)</td>
</tr>
</tbody>
</table>

2.3 Variables in Calculus

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
</table>

2.3 Variables in Calculus
Comprehensive List of Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x), g(x,y), h(z)$ (Functions)</td>
<td>$f(x)$, $g(x,y)$, $h(z)$</td>
<td>$f(2) = g(3,1) + 5$</td>
</tr>
<tr>
<td>a_n, b_n, c_n (Sequences)</td>
<td>a_n, b_n, c_n</td>
<td>$a_n = \frac{3}{n+2}$</td>
</tr>
<tr>
<td>$h, \Delta x$ (Limiting variables in derivatives)</td>
<td>h, Δx</td>
<td>$\lim_{h \to 0} \frac{e^h - e^0}{h} = 1$</td>
</tr>
<tr>
<td>δ, ε (Small quantities in proofs involving limits)</td>
<td>δ, ε</td>
<td>For all $\varepsilon > 0$, there is a $\delta > 0$ such that $</td>
</tr>
<tr>
<td>$F(x), G(x)$ (Antiderivatives)</td>
<td>$F(x)$, $G(x)$</td>
<td>$F'(x) = f(x)$</td>
</tr>
</tbody>
</table>

2.4 Variables in Linear Algebra

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, v, w (Vectors)</td>
<td>\mathbf{u}, \mathbf{v}, \mathbf{w}</td>
<td>$3\mathbf{u} + 4\mathbf{v} = \mathbf{w}$</td>
</tr>
<tr>
<td>A, B, C (Matrices)</td>
<td>A, B, C</td>
<td>$AX = B$</td>
</tr>
<tr>
<td>λ (Eigenvalues)</td>
<td>λ</td>
<td>$A\mathbf{v} = \lambda \mathbf{v}$</td>
</tr>
</tbody>
</table>

2.5 Variables in Set Theory and Logic

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C (Sets)</td>
<td>A, B, C</td>
<td>$A \subseteq B \cup C$</td>
</tr>
</tbody>
</table>
2.6 Variables in Probability and Statistics

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y, Z (Random variables)</td>
<td>X, Y, Z</td>
<td>$E(X + Y) = E(X) + E(Y)$</td>
</tr>
<tr>
<td>μ (Population means)</td>
<td>μ</td>
<td>$H_0: \mu = 5$</td>
</tr>
<tr>
<td>σ (Population standard deviations)</td>
<td>σ</td>
<td>$\sigma_1 = \sigma_2$</td>
</tr>
<tr>
<td>s (Sample standard deviations)</td>
<td>s</td>
<td>$s \neq \sigma$</td>
</tr>
<tr>
<td>n (Sample sizes)</td>
<td>n</td>
<td>For $n \geq 30$, use the normal distribution.</td>
</tr>
<tr>
<td>ρ (Population correlations)</td>
<td>ρ</td>
<td>$H_a: \rho < 0$</td>
</tr>
<tr>
<td>r (Sample correlations)</td>
<td>r</td>
<td>If $r = 0.75$, then $r^2 = 0.5625$.</td>
</tr>
<tr>
<td>π (Population proportions)</td>
<td>π</td>
<td>$\pi = 0.5$</td>
</tr>
<tr>
<td>p (Sample proportions)</td>
<td>p</td>
<td>$p = \frac{X}{n}$</td>
</tr>
</tbody>
</table>
3 Delimiters

3.1 Common Delimiters

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>. (Decimal separator)</td>
<td>$.$</td>
<td>25.9703</td>
</tr>
<tr>
<td>: (Ratio indicator)</td>
<td>$::$</td>
<td>$1 : 4 : 9 = 3 : 12 : 27$</td>
</tr>
<tr>
<td>, (Object separator)</td>
<td>$.$</td>
<td>(3, 5, 12)</td>
</tr>
<tr>
<td>(), [], { } (Order-of-operation indicators)</td>
<td>$()$, $[]$, ${}$</td>
<td>$(a + b) \times c$</td>
</tr>
<tr>
<td>(), [] (Interval indicators)</td>
<td>$()$, $[]$</td>
<td>$3 \notin (3, 4], 4 \in (3, 4]$</td>
</tr>
</tbody>
</table>

3.2 Other Delimiters

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(), [], (x, y), $\begin{pmatrix} a \ b \end{pmatrix}$ (Vector/matrix indicators)</td>
<td>$()$, $[]$, $\begin{pmatrix} a \ b \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 4 \ 3 & 6 \end{pmatrix}$</td>
</tr>
<tr>
<td>{ } (Set builder)</td>
<td>${}$</td>
<td>${\pi, e, i}$</td>
</tr>
<tr>
<td></td>
<td>(“Such that” markers)</td>
<td>$\mid, :$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

\[\| \|, \| \| \] (Metric-related operators)
\[\| (3, 4) \| = 5 \]

\[\begin{cases} f(x) & x \ge a \\ g(x) & x < a \end{cases} \]
(Piecewise-function marker)

\[\langle \rangle \] (Inner product operator)
\[\langle ka, b \rangle = k \langle a, b \rangle \]

\[\lceil \rceil \] (Ceiling operator)
\[\lceil 2.476 \rceil = 3 \]

\[\lfloor \rfloor \] (Floor operator)
\[\lfloor \pi \rfloor = 3 \]

4 Operators

4.1 Common Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + y) (Sum)</td>
<td>$x + y$</td>
<td>(2a + 3a = 5a)</td>
</tr>
<tr>
<td>(x - y) (Difference)</td>
<td>$x - y$</td>
<td>(11 - 5 = 6)</td>
</tr>
<tr>
<td>(-x) (Additive inverse)</td>
<td>$-x$</td>
<td>(-3 + 3 = 0)</td>
</tr>
<tr>
<td>(x \times y, x \cdot y, xy) (Product)</td>
<td>$x \times y$, $x \cdot y$, xy</td>
<td>((m + 1)n = mn + n)</td>
</tr>
<tr>
<td>(x \div y, x/y) (Quotient)</td>
<td>$x \div y$, x/y</td>
<td>(152 \div 3 = 50.6)</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

\[
\frac{x}{y} \quad \text{(Fraction)}
\]

\[
x^y \quad \text{(Power)}
\]

\[
x \pm y \quad \text{(Plus and minus)}
\]

\[
\sqrt{x} \quad \text{(Positive square root)}
\]

\[
|x| \quad \text{(Absolute value)}
\]

\[
x\% \quad \text{(Percent)}
\]

Function-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\operatorname{dom}f) (Domain)</td>
<td>$\operatorname{dom}f$</td>
<td>If (g(x) = \ln x), then (\operatorname{dom}(g) = \mathbb{R}).</td>
</tr>
<tr>
<td>(\operatorname{ran}f) (Range)</td>
<td>$\operatorname{ran}f$</td>
<td>If (h(y) = \sin y), then (\operatorname{ran}(h) = [-1, 1]).</td>
</tr>
<tr>
<td>(f(x)) (Image of an element)</td>
<td>$f(x)$</td>
<td>(g(5) = g(4) + 3)</td>
</tr>
<tr>
<td>(f(X)) (Image of a set)</td>
<td>$f(X)$</td>
<td>(f(A \cap B) \subseteq f(A) \cap f(B))</td>
</tr>
<tr>
<td>(f \circ g) (Composite function)</td>
<td>$f \circ g$</td>
<td>If (g(3) = 5) and (f(5) = 8), then ((f \circ g)(3) = 8).</td>
</tr>
</tbody>
</table>

4.3 Elementary Functions
Comprehensive List of Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_n x^n + \cdots + k_0 x^0$ (Polynomial)</td>
<td>$k_n x^n \cdots k_0 x^0$</td>
<td>The polynomial $x^3 + 2x^2 + 3$ has a root in $(-3, -2)$.</td>
</tr>
<tr>
<td>e^x, $\exp x$ (Natural exponential function)</td>
<td>e^x, $\exp x$</td>
<td>$e^{x+y} = e^x \cdot e^y$</td>
</tr>
<tr>
<td>b^x (General exponential function)</td>
<td>b^x</td>
<td>$2^x > x^2$ for large x.</td>
</tr>
<tr>
<td>$\ln x$ (Natural logarithmic function)</td>
<td>$\ln x$</td>
<td>$\ln(x^2) = 2 \ln x$</td>
</tr>
<tr>
<td>$\log x$ (Common logarithmic function)</td>
<td>$\log x$</td>
<td>$\log 10000 = 4$</td>
</tr>
<tr>
<td>$\log_b x$ (General logarithmic function)</td>
<td>$\log_b x$</td>
<td>$\log_2 x = \frac{\ln x}{\ln 2}$</td>
</tr>
<tr>
<td>$\sin x$ (Sine function)</td>
<td>$\sin x$</td>
<td>$\sin \pi = 0$</td>
</tr>
<tr>
<td>$\cos x$ (Cosine function)</td>
<td>$\cos x$</td>
<td>$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$</td>
</tr>
<tr>
<td>$\tan x$ (Tangent function)</td>
<td>$\tan x$</td>
<td>$\tan x = \frac{\sin x}{\cos x}$</td>
</tr>
</tbody>
</table>

4.4 Algebra-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gcd(x, y)$ (Greatest common factor)</td>
<td>$\gcd(x, y)$</td>
<td>$\gcd(35, 14) = 7$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

$\lfloor x \rfloor$ (Floor operator) \hspace{0.5cm} $\lceil x \rceil$ (Ceiling operator)

$\min (A)$ (Minimum) \hspace{0.5cm} $\max (A)$ (Maximum)

$x \mod y$ (Modulo operator)

$\sum_{i=m}^{n} a_i$ (Summation) \hspace{0.5cm} $\prod_{i=m}^{n} a_i$ (Pi Product)

$[a]$ (Equivalence class)

$\deg f$ (Degree of polynomial)

\bar{z} (Complex conjugate)

$|z|$ (Absolute value of complex number)

$\arg z$ (Arguments of complex number)

4.5 Geometry-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\min (A)$</td>
<td>$\min (A)$</td>
<td>If $\min (A) = 3$, then $\min(A + 5) = 8$.</td>
</tr>
<tr>
<td>$\max (A)$</td>
<td>$\max (A)$</td>
<td>$\max(A \cup B) \geq \max(A)$</td>
</tr>
<tr>
<td>$x \mod y$</td>
<td>$x \bmod y$</td>
<td>$36 \mod 5 = 1$</td>
</tr>
<tr>
<td>$\sum_{i=m}^{n} a_i$</td>
<td>$\sum_{i=m}^{n} a_i$</td>
<td>$\sum_{i=1}^{5} i^2 = 55$</td>
</tr>
<tr>
<td>$\prod_{i=m}^{n} a_i$</td>
<td>$\prod_{i=1}^{n} a_i$</td>
<td>$\prod_{i=1}^{n} = n!$</td>
</tr>
<tr>
<td>$[a]$</td>
<td>$[a]$</td>
<td>$[a] \equiv {x \mid xRa}$</td>
</tr>
<tr>
<td>$\deg f$</td>
<td>$\deg f$</td>
<td>$\deg(2x^2 + 3x + 5) = 2$</td>
</tr>
<tr>
<td>\bar{z}</td>
<td>\bar{z}</td>
<td>$5 - 8i = 5 + 8i$</td>
</tr>
<tr>
<td>$</td>
<td>z</td>
<td>$</td>
</tr>
<tr>
<td>$\arg z$</td>
<td>$\arg z$</td>
<td>$\arg(1 + i) = \frac{\pi}{4} + 2\pi n$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle ABC$</td>
<td>$\angle ABC$</td>
<td>$\angle ABC = \angle CBA$</td>
</tr>
<tr>
<td>$\angle ABC, m\angle ABC$</td>
<td>$\angle ABC, m\angle ABC$</td>
<td>$\angle ABC = \angle A'B'C'$</td>
</tr>
<tr>
<td>\overrightarrow{AB}</td>
<td>\overrightarrow{AB}</td>
<td>$\overrightarrow{AB} = \overrightarrow{BA}$</td>
</tr>
<tr>
<td>$</td>
<td>AB</td>
<td>$</td>
</tr>
</tbody>
</table>

4.6 Logic-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negation $\neg P$</td>
<td>$\neg P$</td>
<td>$\neg (1 = 2)$</td>
</tr>
<tr>
<td>Conjunction $P \land Q$</td>
<td>$P \land Q$</td>
<td>$P \land Q \equiv Q \land P$</td>
</tr>
<tr>
<td>Disjunction $P \lor Q$</td>
<td>$P \lor Q$</td>
<td>$\pi^c \in Q \lor \pi^c \notin Q$</td>
</tr>
<tr>
<td>Conditional $P \to Q$</td>
<td>$P \to Q$</td>
<td>$P \to Q \equiv (\neg P \lor Q)$</td>
</tr>
<tr>
<td>Biconditional $P \leftrightarrow Q$</td>
<td>$P \leftrightarrow Q$</td>
<td>$P \leftrightarrow Q \implies P \to Q$</td>
</tr>
</tbody>
</table>
4.7 Set-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x P(x)$ (Universal statement)</td>
<td>$\forall x P(x)$</td>
<td>$\forall y \in \mathbb{N} (y + 1 \in \mathbb{N})$</td>
</tr>
<tr>
<td>$\exists x P(x)$ (Existential statement)</td>
<td>$\exists x P(x)$</td>
<td>$\exists z (z^2 = -\pi)$</td>
</tr>
</tbody>
</table>

4.8 Vector-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|v|$ (Norm of vector)</td>
<td>$|v|$</td>
<td>$|(3, 4)| = 5$</td>
</tr>
</tbody>
</table>
4.9 Matrix-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A + B$ (Matrix sum)</td>
<td>$A+B$</td>
<td>$A + X = B$</td>
</tr>
<tr>
<td>$A - B$ (Matrix difference)</td>
<td>$A-B$</td>
<td>In general, $A - B \neq B - A$.</td>
</tr>
<tr>
<td>$-A$ (Additive inverse)</td>
<td>$-A$</td>
<td>$B + (-B) = 0$</td>
</tr>
<tr>
<td>kA (Scalar product)</td>
<td>kA</td>
<td>$(-1)A = -A$</td>
</tr>
<tr>
<td>AB (Matrix product)</td>
<td>AB</td>
<td>$AI = IA = A$</td>
</tr>
<tr>
<td>A^T (Matrix transpose)</td>
<td>A^T</td>
<td>$I^T = I$</td>
</tr>
<tr>
<td>A^{-1} (Matrix inverse)</td>
<td>A^{-1}</td>
<td>$(AB)^{-1} = B^{-1}A^{-1}$</td>
</tr>
<tr>
<td>$\text{tr}(A)$ (Trace of matrix)</td>
<td>$\text{tr}(A)$</td>
<td>$\text{tr}(A^T) = \text{tr}(A)$</td>
</tr>
</tbody>
</table>
Comprehensive List of Mathematical Symbols

\[
\text{det}(A), |A|, \begin{vmatrix} x & y \\ w & z \end{vmatrix} \quad \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} = 2 - 12 = -10
\]

(Determinant)

4.10 Probability-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n!) (Factorial)</td>
<td>(n!)</td>
<td>(4! = 4 \cdot 3 \cdot 2 \cdot 1)</td>
</tr>
<tr>
<td>(nPr) (Permutation)</td>
<td>(nPr)</td>
<td>(5P3 = 5 \cdot 4 \cdot 3)</td>
</tr>
<tr>
<td>(nCr) (Combination)</td>
<td>(\binom{n}{r})</td>
<td>(\binom{5}{2} = \binom{5}{3})</td>
</tr>
<tr>
<td>(P(E)) (Probability of event)</td>
<td>(P(E))</td>
<td>(P(A \cup B \cup C) = 0.3)</td>
</tr>
<tr>
<td>(P(A</td>
<td>B)) (Conditional probability)</td>
<td>(P(A</td>
</tr>
<tr>
<td>(E(X)) (Expected value of random variable)</td>
<td>(E(X))</td>
<td>(E(X + Y) = E(X) + E(Y))</td>
</tr>
<tr>
<td>(V(X)) (Variance of random variable)</td>
<td>(V(X))</td>
<td>(V(5X) = 25V(X))</td>
</tr>
</tbody>
</table>

4.11 Statistics-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
</table>
4.12 Key Probability Functions and Distributions

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin((n, p)) (Binomial distribution)</td>
<td>$\operatorname{Bin}(n, p)$</td>
<td>$X \sim \text{Bin}(10, 0.5)$. If X stands for the number of heads in 10 coin tosses, then $X \sim \text{Bin}(10, 0.5)$.</td>
</tr>
<tr>
<td>Geo((p)) (Geometric distribution)</td>
<td>$\operatorname{Geo}(p)$</td>
<td>$Y \sim \text{Geo}(1/5)$, then $E(Y) = 5$.</td>
</tr>
<tr>
<td>$U(a, b)$ (Continuous uniform distribution)</td>
<td>$U(a, b)$</td>
<td>$X \sim U(3, 7)$, then $V(X) = \frac{(7 - 3)^2}{12}$.</td>
</tr>
<tr>
<td>$N(\mu, \sigma^2)$ (Normal distribution)</td>
<td>$N(\mu, \sigma^2)$</td>
<td>$X \sim N(3, 5^2)$, then $\frac{X - 3}{5} \sim Z$.</td>
</tr>
<tr>
<td>z_{α} (Critical z-score)</td>
<td>z_{α}</td>
<td>$z_{0.05} \approx 1.645$.</td>
</tr>
<tr>
<td>$t_{\alpha, \nu}$ (Critical t-score)</td>
<td>$t_{\alpha, \nu}$</td>
<td>$t_{0.05, 1000} \approx z_{0.05}$.</td>
</tr>
<tr>
<td>$\chi^2_{\alpha, \nu}$ (Critical Chi-squared-score)</td>
<td>$\chi^2_{\alpha, \nu}$</td>
<td>$\chi^2_{0.05, 30} \approx 43.77$.</td>
</tr>
</tbody>
</table>

\(\overline{X} \) (Sample mean) \quad \overline{X} = \frac{\sum X}{n}

\(s^2 \) (Sample variance) \quad s^2 = \frac{\sum (X - \overline{X})^2}{n - 1}

\(\sigma^2 \) (Population variance) \quad \sigma^2 = \frac{\sum (X - \mu)^2}{n}
4.13 Calculus-related Operators

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lim_{n \to \infty} a_n) (Limit of sequence)</td>
<td>(\displaystyle \lim_{n \to \infty} a_n)</td>
<td>(\lim_{n \to \infty} \frac{n + 3}{2n} = \frac{1}{2})</td>
</tr>
<tr>
<td>(\lim_{x \to c} f(x)) (Limit of function)</td>
<td>(\displaystyle \lim_{x \to c} f(x))</td>
<td>(\frac{\pi \sin x}{2} = \frac{\pi}{2} \lim_{x \to 3} \sin x)</td>
</tr>
<tr>
<td>(\sup(A)) (Supremum)</td>
<td>(\sup(A))</td>
<td>(\sup([-3, 5]) = 5)</td>
</tr>
<tr>
<td>(\inf(A)) (Infimum)</td>
<td>(\inf(A))</td>
<td>If (B = {1, \frac{1}{2}, \ldots}), then (\inf(B) = 0).</td>
</tr>
<tr>
<td>(f', f'', f''') (f^{(n)}) (Derivative)</td>
<td>(f', f'', f''', f^{(n)})</td>
<td>((\sin x)''' = -\cos x)</td>
</tr>
<tr>
<td>(\int_a^b f(x) , dx) (Definite integral)</td>
<td>(\displaystyle \int_a^b f(x) , dx)</td>
<td>(\int_0^1 \frac{1}{1 + x^2} = \frac{\pi}{4})</td>
</tr>
<tr>
<td>(\int f(x) , dx) (Indefinite integral)</td>
<td>(\displaystyle \int f(x) , dx)</td>
<td>(\int \ln x , dx = x \ln x - x)</td>
</tr>
<tr>
<td>(f_x) (Partial derivative)</td>
<td>(f_x)</td>
<td>If (f(x, y) = x^2 y^3), then (f_x(x, y) = 2xy^3).</td>
</tr>
</tbody>
</table>
5 Relational Symbols

5.1 Equality-based Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = y) (Equal)</td>
<td>(x = y)</td>
<td>(3x - x = 2x)</td>
</tr>
<tr>
<td>(x \ne y) (Non-equal)</td>
<td>(x \ne y)</td>
<td>(2 \ne 3)</td>
</tr>
<tr>
<td>(x \approx y) (Approximately equal)</td>
<td>(x \approx y)</td>
<td>(\pi \approx 3.1416)</td>
</tr>
<tr>
<td>(x \sim y, xRy) (Related to)</td>
<td>(x \sim y, xRy)</td>
<td>(xRy) if and only if (</td>
</tr>
<tr>
<td>(x \equiv y) (Equivalent to)</td>
<td>(x \equiv y)</td>
<td>(2 \equiv 101) in (\text{mod } 33)</td>
</tr>
<tr>
<td>(f(x) \propto g(x)) (Proportional to)</td>
<td>(f(x) \propto g(x))</td>
<td>(V \propto r^3)</td>
</tr>
</tbody>
</table>

5.2 Comparison-based Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x < y) (Less than)</td>
<td>(x < y)</td>
<td>(\sin x < 3)</td>
</tr>
<tr>
<td>(x > y) (Greater than)</td>
<td>(x > y)</td>
<td>(\pi > e)</td>
</tr>
<tr>
<td>(x \le y) (Less than or equal to)</td>
<td>(x \le y)</td>
<td>(n! \le n^n)</td>
</tr>
</tbody>
</table>
5.3 Number-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m \mid n$ (Divisibility)</td>
<td>$m \mid n$</td>
<td>$101 \mid 1111$</td>
</tr>
<tr>
<td>$m \perp n$ (Coprime integers)</td>
<td>$m \perp n$</td>
<td>$31 \perp 97$</td>
</tr>
</tbody>
</table>

5.4 Geometry-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell_1 \parallel \ell_2$ (Parallel)</td>
<td>$\ell_1 \parallel \ell_2$</td>
<td>$PQ \parallel RS$</td>
</tr>
<tr>
<td>$\ell_1 \perp \ell_2$ (Perpendicular)</td>
<td>$\ell_1 \perp \ell_2$</td>
<td>$\overrightarrow{AB} \perp \overrightarrow{BC}$</td>
</tr>
<tr>
<td>$F \sim F'$ (Similar figures)</td>
<td>$F \sim F'$</td>
<td>$\triangle ABC \sim \triangle DEF$</td>
</tr>
<tr>
<td>$F \cong F'$ (Congruent figures)</td>
<td>$F \cong F'$</td>
<td>$\square ABCD \cong \square PQRS$</td>
</tr>
</tbody>
</table>

5.5 Set-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
</table>
5.6 Logic-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \implies Q) (Implies)</td>
<td>$P \implies Q$</td>
<td>(x) is even (\implies) (2) divides (x)</td>
</tr>
<tr>
<td>(P \iff Q) (If and only if)</td>
<td>$P \iff Q$, $P \equiv Q$</td>
<td>(x \neq y \iff (x - y)^2 > 0)</td>
</tr>
<tr>
<td>(P \because Q) (Because)</td>
<td>$P \because Q$</td>
<td>(x = \frac{\pi}{2} \because \sin x = 1) and (\cos x = 0)</td>
</tr>
</tbody>
</table>

5.7 Probability-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
</table>
| \(A \perp B \) (Independent events) | $A \perp B$ | If \(A \perp B \), then \[
P(A \cap B) = P(A) \cap P(B).
\]
$X \sim F$

(X follows distribution F)

\[Y \sim \text{Bin}(30, 0.4) \]

5.8 Calculus-related Relational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) \sim g(x)$ (Asymptotically equal)</td>
<td>$f(x) \sim g(x)$</td>
<td>$\pi(x) \sim \frac{x}{\ln x}$</td>
</tr>
<tr>
<td>$f(x) \in O(g(x))$ (In the big-O of)</td>
<td>$f(x) \in O(g(x))$</td>
<td>$2x^2 + 3x + 3 \in O(x^2)$</td>
</tr>
</tbody>
</table>

6 Notational Symbols

6.1 Common Notational Symbols

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots, \cdots (Horizontal ellipsis)</td>
<td>\ldots, \cdots</td>
<td>$1^2 + 2^2 + \cdots + n^2$</td>
</tr>
</tbody>
</table>
| \vdots, \ddots (Vertical ellipsis) | \vdots, \ddots | \[
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]
| $f : A \rightarrow B$, $A \xrightarrow{f} B$ (Function’s domain/codomain specifier) | $f : A \rightarrow B$, $A \xrightarrow{\{f\}} B$ | A function $g : \mathbb{N} \rightarrow \mathbb{R}$ can be thought of as a sequence. |
6.2 Notational Symbols in Geometry and Trigonometry

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>° (Degree)</td>
<td>$^\circ$</td>
<td>$\cos(90\degree) = 0$</td>
</tr>
<tr>
<td>′ (Arcminute)</td>
<td>′</td>
<td>$35' = \left(\frac{35}{60}\right)\degree$</td>
</tr>
<tr>
<td>″ (Arcsecond)</td>
<td>″</td>
<td>$20'' = \left(\frac{20}{60}\right)'$</td>
</tr>
<tr>
<td>rad (Radian)</td>
<td>rad</td>
<td>$\pi \text{ rad} = 180\degree$</td>
</tr>
<tr>
<td>grad (Gradian)</td>
<td>grad</td>
<td>$100 \text{ grad} = 90\degree$</td>
</tr>
</tbody>
</table>

6.3 Notational Symbols in Calculus

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+\infty$ (Positive infinity)</td>
<td>$+\text{infty}$</td>
<td>$\frac{n^2 + 1}{n} \to +\infty$</td>
</tr>
</tbody>
</table>
6.4 Notational Symbols in Probability and Statistics

<table>
<thead>
<tr>
<th>Symbols (Explanation)</th>
<th>LaTeX Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.i.d. (Independent and identically distributed)</td>
<td>i.i.d.</td>
<td>Given n i.i.d. random variables X_1, \ldots, X_n, $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.</td>
</tr>
<tr>
<td>H_0 (Null hypothesis)</td>
<td>H_0</td>
<td>$H_0 : \mu = 23$</td>
</tr>
<tr>
<td>H_a (Alternative hypothesis)</td>
<td>H_a</td>
<td>$H_a : \sigma_1^2 \neq \sigma_2^2$</td>
</tr>
</tbody>
</table>

7 Additional Resources

- **Ultimate LaTeX Reference Guide**: A definitive reference guide on the LaTeX language, with the commands, environments and
packages most LaTeX users will ever need

- **Definitive Guide to Learning Higher Mathematics**: A standalone 10-principle framework for tackling higher mathematical learning, thinking and problem solving

- **10 Commandments of Higher Mathematical Learning**: An illustrated web guide on 10 scalable rules for learning higher mathematics

- **Definitive Glossary of Higher Mathematical Jargon**: A tour around higher mathematics in 100 terms