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1 Introduction

In their 1977 seminar work A Course in Mathematical Logic, Bell and Machover introduce
an alternate proof system for propositional logic. Referred to in the book as Propositional
Calculus (henceforth referred to as PropCal for short), this linear axiomatic proof system
is based solely on the 3 axiom schemes outlined below:

AXIOM SCHEME I a— (f—a) (affirming the consequent)
AXIOM SCHEME II [a—= (B—=7)] = [(a = ) = (a—7)] (— distributivity)
AX10M SCHEME III (—ma = B) = [(~a — —=p) = q] (principle of indirect proof)

From there, Bell and Machover define a deduction/proof from a premise set ® to « as
a sequence of formulas aq, ..., a,(= «) such that for all i between 1 and n:

1. Either o; is in ®, or
2. «; is an instance of one of the aforementioned axiom schemes, or

3. «a results from an application of the inference rule Modus Ponens.

If at least one such deduction exists, then we say that ® - « (equiv., ® proves «). Note
that ® could very well be the empty set, in which case « is called a theorem.

Additionally, the definition of a proof does not require that all premises in ® be used. In
fact, in the case where ® is infinite, it is actually impossible that all premises be used.
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2 Structural Rules

Despite having only 3 axiom schemes, the PropCal system is actually surprisingly robust
in terms of deductive power. It also manages to have all the key properties any other
proof system of propositional logic (that is both sound and complete) would have.

For one, the axiom schemes, when combined with the “rules of the game”, give rise to
a dozen of additional rules of inference — called structural rules — which one can
readily use to further facilitate the inference process.

2.1 Definition-Based Structural Rules

In PropCal, there exists two key structural rules that are inherent to the definition of a
deduction: Modus Ponens and Cut.

Structural Rule 1 (Modus Ponens (MP)). Given a premise set ® and two formulas o
and B, if - a — [ and ® + «, then ® + .

Proof. Since ® = a — [, there exists a deduction aq,...,q, with ® being the pre-
mise set and «, being a — £. Similarly, since ® F «, there exists another deduction
Qpils - - Qe With @ again being the premise set and o, ., being a.

By letting a4 o1 be B, one can readily see that the sequence of formulas o, . . ., ayima
constitutes a legitimate deduction from ® to 8 — where the last line is justified as an
application of Modus Ponens based on line n and line n + m. O

Structural Rule 2 (Cut). If &1 F oy, ..., and {aq,...,a,}UPy F 3, then &1 UP, H
B.

Proof. By assumption, for each i between 1 and n there is a deduction from ®; to «;
(i.e., a total of n deductions). Additionally, we also know that there is a deduction from
{ag,...,a,} Udy to § (say with the sequence of formulas 5, ..., [,). With that, we
proceed to construct a giant sequence of formulas as follows:

1. Combine the first n deductions together back to back, and append the last de-
duction fy,..., B,, to the very end.

2. For each $3; that is equal to some «;, remove it from the sequence.

3. For other formulas in the last deduction citing Modus Ponens and referring to the
aforementioned f3;, repair the citation by re-referring them to the same formulas
found in the first n deductions.
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By checking through the definition of deduction, one can then readily see that this giant
sequence of formulas constitutes a legitimate deduction — where ®; U @5 serves as a
premise set and (8 the conclusion. n

In practice, Cut says that if a first premise set proves a series of formulas, which in turn
(possibly under additional premises) prove another formula, then that last formula can
also be proved via the combined premise set as well. In the event where no additional
premise is required, Cut simply boils down to the claim that the provability relation is
transitive:

fdFa,...,qp and {ay,...,a,} F 8. then & F .

2.2 First Two Axiom-Based Structural Rules

At this point, all structural rules presented thus far had to be proved from first principles.
However, we shall soon see that this only paves the way for the remaining rules to be
proved structurally — effectively taking into advantage the axiomatic heavy-lifting that’s
being carried out a bit earlier.

As a start, we begin by noticing that the first two axiom schemes naturally give rise to
their corresponding structural rules: Affirming the Consequent and — Distributivity.

Structural Rule 3 (Affirming the Consequent). Given a premise set ® and two formulas
a and B, if ® F «, then @+ — a.

Proof.
ol e (Assumption) (1)
PFa— (f— a) (Axiom Scheme I) (2)
OFp—a (MP, (1), (2))
[l

Structural Rule 4 (— Distributivity). Given a premise set ® and three formulas o, [
and v, if OFa— (8 —=7), then P F (o — ) = (a = 7).

Proof.
PFa— (—7) (Assumption) (3)
PFHla—=(B—=7)]—=[(a—=pB)—(a—7) (Axiom Scheme II) (4)
Ok (a—=f) = (a—7) (MP, (3), (4))
[
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2.3 The Deduction Theorem

Of course, in order for PropCal to be of any use, it is necessary for it to be able to
prove the trivial, foundational theorems that we might require from time to time. As
an illustration, here is a trivial-looking, seemingly self-explanatory structural rule whose
proof is actually quite subtle and requires a bit of ingenuity.

Structural Rule 5 (Self-Implicability). Given a premise set ® and a formula o, ® F
a = a.

Proof. By hacking the first axiom scheme repeatedly and invoking — distributivity and
MP, we get that:

dFa—[(a—a)—=a (Axiom Scheme I) (5)
Fla— (a— a)] = (a— «a) (— distributivity, (5)) (6)
Fa— (a—a) (Axiom Scheme I) (7)
Fo—a (MP, (6), (7))

]

Since our formulas are built in a huge part using —, it is not unreasonable to expect its
corresponding proof system to reflect the meaning of — as well. In fact, the following
structural rule shows our system is indeed well-suited for that purpose.

Structural Rule 6 (Deduction Theorem (DT)). Given a premise set ® and two for-
mulas « and B, if ® U{a} F 5, then ®F a — 5.

Proof. By assumption, there is a deduction f(i,..., 3, with premise set ® U {«} and
conclusion (3, so we do know — by the definition of a deduction — that ® U{a} - f; for
each 7 between 1 and n.

In a similar spirit, it turns out that one can also show — by strong induction — that
® F o — f; for all i between 1 and n:

Base Case: We want to show that ® - a — ;. Since by assumption (; is the first
formula in a deduction, it couldn’t have possibly resulted from an application of Modus
Ponens. This would leave us with two possible scenarios: either £, belongs to the premise
set @ U {a}, or it is an instance of one of the 3 axiom schemes.

e /1 € dU{a}: If By € @, then clearly ® F 1, which means that ® F o — ;
by Affirming the Consequent. If on the other hand we have that f; = «, then
® F a — p1 would still follow by Self-Implicability.
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e (31 is an axiom: In this case, since clearly ® - 51, applying Affirming the Consequent
again would still show that ® = o« — [; — thereby exhausting all the scenarios for
the base case.

Inductive Case: Assume — by inductive hypothesis — that ® - a — £y, ..., ® F
a — B, (where m is an arbitrary positive integer smaller than n). Our goal is to show
that ® - o — B,,11 as well.

If B,,41 is a premise or an axiom, then the above argument in the base case could be
reused to show that ® - o — (,,41. If on the other hand (3,1 results from an application
of Modus Ponens, then it would mean that there exists two positive integers 7 and j (both
less than m + 1) such that for some formulas ¢; and ¢o:

L 8=
2. Bj =1 — &2
3. /Bm—i-l = ¢2

In which case, it would follow that:

bFa—p (e, a— @) (Inductive Hypothesis) (8)
OFa—p; (e, a— (¢1— ¢2)) (Inductive Hypothesis) (9)
OF (a— ¢1) = (= ¢9) (— Distributivity, (9)) (10)
SF (05 ¢) (o Bpr) (P, (5), (10))

So ® - a — fB,,11, thereby settling the inductive case. Hence we must have that,
® F a — f; for all i between 1 and n. In particular, ® - o — g, (ie., PFa— §). O

In a nutshell, DT formalizes our intuitive understanding about an implication, and repre-
sents the first structural rule that legitimizes the so-called discharge of assumptions. As
such, it plays an integral role in establishing proofs where making temporary assumptions
is a necessary evil.

2.4 Inconsistency-Based Structural Rules

Since some proof techniques rely heavily on the presence of contradiction, it is not unusual
for a proof system to have some sort of proof-by-contradiction rules embedded into it.

In PropCal, if a premise set ® is such that ® F a, —a for some formula «, then ® is
called an inconsistent set (equiv., ® ). As one would expect, there are quite a few
structural rules whose working depends on the presence of inconsistency as well.
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Structural Rule 7 (Principle of Indirect Proof (PIP)). Given a premise set ® and a
formula o, if ® U {—-a} F, then &+ a.

Proof.
¢ U {-a} F 8,25 (for some formula /3) (definition of inconsistency) (11)
O —a— B, ma— = (DT, (1)) (12)
OF (—ma— b)) — [(~a— —p) = af (Axiom Scheme III) (13)
O+ (~a— —=f) =« (MP, (12), (13))  (14)
N e (MP, (12),(14))
[

In essence, PIP is really just the third axiom scheme in disguise. However, unlike the
structural rules corresponding to the first two axiom schemes, proving PIP actually
requires the heavy machinery that DT provides.

With the three axiom schemes readily converted into structural rules, we can now re-
frain from invoking the schemes altogether. And with just a bit of work, the other
inconsistency-based structural rules can be derived one after another as well.

Structural Rule 8 (Inconsistency Effect (IE)). Given a premise set ® and a formula
a, if -, then ® F «.

Proof.
¢+ 5,-5 (for some formula ) (definition of inconsistency)
dU{-a}F p,-5 (definition of deduction) (15)
O a (PIP, (15))

]

Now, since a formula with double negation is tautologically equivalent to the same for-
mula with the double negation eliminated, one would think that a robust proof system
such as PropCal should to be able to “remove” the double negation as one navigates
through the deduction process — a hunch that is well-confirmed by the following struc-
tural rule.

Structural Rule 9 (Double Negation Elimination). Given a premise set ® and a for-
mula o, if ® - ——a, then  F «.

2 STRUCTURAL RULES 6


http://mathvault.ca

A SURVEY ON BELL & MACHOVER’S PropCal MATH VAULT

Proof.

¢ U {-a} F —a, o (definition of deduction) (16)
D+« (PIP, (16))

]

At this point, we have a proof-by-contradiction rule that allows for removing the negation
sign in the inference process (i.e., PIP), but is there a similar rule out there that allows
for adding a negation sign instead? As it turns out, a structural rule corresponding to
the counterpart of PIP does indeed exist — thereby showing that proof by contradiction
in PropCal does indeed work in both ways.

Structural Rule 10 (Reductio). Given a premise set ® and a formula o, if ®U{a} -,
then ® F —a.

Proof.
O U {——a}F —a (definition of deduction) (17)
dU{——a}Fa (Double Negation Elimination, (17)) (18)
o U{a}tt 5,-p (for some formula J3) (definition of inconsistency) (19)
®U{-mat 3,20 (Cut, (18), (19)) (20)
- (PIP, (20))
[

2.5 Two Higher Structural Rules

In Machover’s Set Theory, Logic and their Limitations, the inference process known as
Denying the Consequent is embedded into the fourth axiom scheme. In the current

version of PropCal, however, validating it as a structural rule requires that we establish
IE and DT beforehand.

Structural Rule 11 (Denying the Antecedent). Given a premise set ® and two formulas
a and B, if ® F —a, then ®+ a — .

Proof.
dU{a}t « (definition of deduction) (21)
dU{a} F (assumption / definition of deduction) (22)
dU{a}Ff (IE,(21), (22)) (23)
OFa—f (DT, (23))
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]

As one would expect, Denying the Antecedent and Affirming the Consequent go hand in
hand, with both expressing some intuitive facts about how the truth of an implication is
related to the truth of its constituents: whereas Denying the Antecedent asserts that “if
a statement is false, it implies anything”, Affirming the Consequent articulates the idea
that “if a statement is true, then anything implies it”.

As a recap, all the formulas in PropCal (hence all the axioms as well) are constructed
using — and —. Accordingly, it tends to accomodate proof techniques such as direct
proof (e.g., MP, Cut, DT) and indirect proof (e.g., PIP, Reductio) fairly well. On the
other hand, it’s not all clear how such a system can accommodate other proof techniques
such as proof by cases, when the language from which the formulas are constructed does
not even contain the disjunction connective V.

As luck would have it, it turns out that PropCal is well capable of formalizing the infe-
rence process of proof by cases — and sometimes even without resorting to any formula
used to simulate disjunction. To illustrate, here is a structural rule which corresponds to
a special form of proof by cases — the one that conditions on the truth and the falsity
of a single formula.

Structural Rule 12 (Proof by Cases). Given a premise set & and two formulas o and
B, if ®U{a}F B and ®U{-a} F B, then ® | (.

Proof.
dU{a}U{-p}F 5,6 (assumption / definition of deduction) (24)
dU{-}F —a (Reductio, (24)) (25)
dU{-a}U{-}F 5, (assumption / definition of deduction) (26)
dU{-}Fa (PIP, (26)) (27)
¢+ (PIP, (25), (27))
[l

3 Recapitulation

Putting everything together, we now present all the axiom schemes and structural rules
one can readily employ in PropClal:
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Name (Axiom Scheme)

Description

AXIOM SCHEME I (AFFIRMING THE CONSEQUENT)
AXIOM SCHEME II (— DISTRIBUTIVITY)
AX10M SCHEME III (PRINCIPLE OF INDIRECT PROOF)

a— (= a)
[a = (6 =7)] = (= 5) = (a—=9)]
(a = B) = [(ca = =B) = o]

AFFIRMING THE CONSEQUENT
— DISTRIBUTIVITY
SELF-IMPLICABILITY
DepucTIiON THEOREM (DT)
PRINCIPLE OF INDIRECT PROOF (PIP)
INCONSISTENCY ErrFECT (IE)
DOUBLE NEGATION ELIMINATION
REDUCTIO

DENYING THE ANTECEDENT
ProOF BY CASES

Name (Structural Rule) Description
Mobus PoNENs (MP) If®+Fa— pfand ®F «, then ® F 3.
Cut IfdFay,...,a, and {aq,...,a,} UDy F 5, then &1 U Dy F .

If®F a, then ®F 3 — a.

IfoFa— (B—7),then dF (= f) = (a = 7).
PFa—a

Ifdu{a}t 8, then ®F a — 5.

If ®U{-a}t, then & F .

If ® F, then ® F a.

If ® - =—=a, then @ I «.

If ®U{a}F, then ® - —a.

If &+ —a, then @+ a — 5.
Ifdu{a}t fand ®U{-a}F 3, then ¢+ f.
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